Notes
upside-down semi-circles in a semi-circle solution

Solution to the Upside-Down Semi-Circles in a Semi-Circle Puzzle

Upside-Down Semi-Circles in a Semi-Circle

What proportion of each diagram is shaded? Give your answers as decimals. What comes next?

Solution by Pythagoras' Theorem

Upside-down semi-circles in a semi-circle labelled

Fix a diagram with nn small semi-circles. Let rr be the radius of the small semi-circles and RR of the outer one. In that diagram, triangle OBAO B A is right-angled. The length of OAO A is rr while the length of OBO B is nrn r. Applying Pythagoras' theorem shows that:

R 2=r 2+n 2r 2=(n 2+1)r 2 R^2 = r^2 + n^2 r^2 = (n^2 + 1) r^2

The shaded area is n×12πr 2n \times \frac{1}{2} \pi r^2 while the area of the outer semi-circle is 12πR 2=(n 2+1)×12πr 2\frac{1}{2} \pi R^2 = (n^2 + 1) \times \frac{1}{2} \pi r^2. The proportion that is shaded is therefore nn 2+1\frac{n}{n^2 + 1}. The first few values of this are:

12 =0.5 25 =0.4 310 =0.3 417 0.23529411764705882 526 0.19230769230769232 637 0.16216216216216217 750 =0.14 865 0.12307692307692308 982 0.10975609756097561 \begin{aligned} \frac{1}{2} &= 0.5 \\ \frac{2}{5} &= 0.4 \\ \frac{3}{10} &= 0.3 \\ \frac{4}{17} &\simeq 0.23529411764705882 \\ \frac{5}{26} &\simeq 0.19230769230769232 \\ \frac{6}{37} &\simeq 0.16216216216216217 \\ \frac{7}{50} &=0.14 \\ \frac{8}{65} &\simeq 0.12307692307692308 \\ \frac{9}{82} &\simeq 0.10975609756097561 \end{aligned}