Notes
multiple semi-circles solution

Solution to the Multiple Semi-Circles Puzzle

Multiple Semi-Circles

The three coloured regions have the same area. Altogether, what fraction of the shape do they cover?

Solution by Angle in a Semi-circle

Multiple semi-circles labelled

In the above diagram, let aa be the length of ABA B, bb of BCB C, and cc of CDC D. From the formula for the area of a circle, the area of a semi-circle can be found from its diameter as 12π(12d) 2=18πd 2\frac{1}{2} \pi \left( \frac{1}{2} d\right)^2 = \frac{1}{8} \pi d^2.

So the area of the purple semi-circle is 18πa 2\frac{1}{8} \pi a^2. The second largest semi-circle has area 18π(a+b) 2\frac{1}{8} \pi (a + b)^2, so the cyan region has area:

18π(a+b) 218πa 218πb 2=14πab \frac{1}{8} \pi (a + b)^2 - \frac{1}{8} \pi a^2 - \frac{1}{8} \pi b^2 = \frac{1}{4} \pi a b

Since the purple and cyan regions have the same area, 18πa 2=14πab\frac{1}{8} \pi a^2 = \frac{1}{4} \pi a b so a=2ba = 2 b.

The diameter of the full semi-circle is a+b+c=3b+ca + b + c = 3 b + c. So the area of the yellow region is:

18π(3b+c) 218π(3b) 218c 2=34πbc \frac{1}{8} \pi (3 b + c)^2 - \frac{1}{8} \pi (3 b)^2 - \frac{1}{8} c^2 = \frac{3}{4} \pi b c

This has the same area as the cyan region, so 34πbc=14πab\frac{3}{4} \pi b c = \frac{1}{4} \pi a b which means that 3c=a3 c = a.

The diameter of the full semi-circle is therefore a+12a+13a=113aa + \frac{1}{2} a + \frac{1}{3} a = \frac{11}{3} a so its area is 18π(113a) 2=12172πa 2\frac{1}{8} \pi \left( \frac{11}{3} a \right)^2 = \frac{121}{72} \pi a^2.

The unshaded regions have diameters 12a\frac{1}{2} a and 13a\frac{1}{3} a so have areas 18π(12a) 2+18π(13a) 2=13288πa 2\frac{1}{8} \pi \left( \frac{1}{2} a \right)^2 + \frac{1}{8} \pi \left( \frac{1}{3} a \right)^2 = \frac{13}{288} \pi a^2.

The fraction that is shaded is therefore:

275288πa 212172πa 2=275484=2544 \frac{ \frac{275}{288} \pi a^2 }{ \frac{121}{72} \pi a^2 } = \frac{275}{484} = \frac{25}{44}