Notes
diagonal in a square solution

Diagonal in a Square

Diagonal in a Square

The point lies on the diagonal of the square so that a+b=ca + b = c. What’s the angle?

Solution by Equilateral Triangles

Diagonal in a square labelled

In the diagram above, EE is on the diagonal so that AEA E is the same length as FCF C, namely aa. The length of EFE F is then cac - a which, from the statement of the problem, is bb. By symmetry, BEB E is also of length bb so BEFB E F is an equilateral triangle and angle AF^BA \hat{F} B is 60 60^\circ.