Notes
compound angle formulae

Compound Angle Formulae

The compound angle formulae are identities satisfied by the trigonometric functions. They state that for all angles xx and yy then:

sin(x+y) =sin(x)cos(y)+cos(x)sin(y) cos(x+y) =cos(x)cos(y)sin(x)sin(y) tan(x+y) =tan(x)+tan(y)1tan(x)tan(y) \begin{aligned} \sin(x + y) &= \sin(x) \cos(y) + \cos(x) \sin(y) \\ \cos(x + y) &= \cos(x) \cos(y) - \sin(x) \sin(y) \\ \tan(x + y) &= \frac{\tan(x) + \tan(y)}{1 - \tan(x) \tan(y)} \end{aligned}

Double Angle Formulae

Applying the above with x=yx = y yields:

sin(2x) =2sin(x)cos(x) cos(2x) =cos 2(x)sin 2(x)=2cos 2(x)1=12sin 2(x) tan(2x) =2tan(x)1tan 2(x) \begin{aligned} \sin(2 x) &= 2 \sin(x) \cos(x) \\ \cos(2 x) &= \cos^2(x) - \sin^2(x) = 2 \cos^2(x) - 1 = 1 - 2 \sin^2(x) \\ \tan(2 x) &= \frac{2 \tan(x)}{1 - \tan^2(x)} \end{aligned}

Half-Angle Formulae

Setting t=tan(12x)t = \tan\left(\frac{1}{2} x\right) then the double angle formulae can be rewritten as:

sin(x) =2t1+t 2 cos(x) =1t 21+t 2 tan(x) =2t1t 2 \begin{aligned} \sin(x) &= \frac{2 t}{1 + t^2} \\ \cos(x) &= \frac{1 - t^2}{1 + t^2} \\ \tan(x) &= \frac{2 t}{1 - t^2} \end{aligned}

category: trigonometry